The Silurian ostracod *Colymbosathon ecplecticos* Siveter et al., 2003 with preserved soft-parts

Dear Friends,

Because of various reasons (not all of it your Editor's fault) there was a period of silence. I apologise to all, both those who kindly sent items which are not up to date any more, and those who thought they are being left out or forgotten.

Wishing all of you a happy and fruitful 1972.

Ephraim Gerry

1970 Friends of the Ostracodes Meeting in Milwaukee
during the Geological Society of America,
Paleontological Society Convention

The meeting was convened at 8:30 P.M. in the Sheraton-Schroeder Hotel and was attended by 17 people. The need for a revision of the Treatise ostracode volume was discussed. It was agreed that the time is ripe for the Paleozoic ostracodes to be revised, probably as a separate part together with the introductory material, classification, ecology, biostratigraphy, etc. The Cypridacea and Cytheracea still require much basic work, but considering the host of new taxa since 1961, effort toward Treatise revision in those groups also should begin as soon as possible. Enough scanning microscopes are available to permit this mode of illustration to be made of much of the type material that is accessible for refiguring.

It was the consensus of the group that more workers should be involved in the Treatise revision, including the many active Europeans. Anatomical features should be included this time. Ecology and paleoecology of Ostracoda should be expanded. More effort to locate and refigure types should be made. The revised ostracode volume would probably require at
least two parts. The group hopes that the Treatise administrators will recognize the need for the revision.

The problems in various groups of Ostracode were discussed briefly, along with the possibility of preparing a discussion of ostracode zonation.

The projected meeting of ostracode workers at the University of Delaware in 1972 was discussed.

Those present briefly described their recent work.

Meade Cabot, University of Kansas, Lawrence, is studying population variations in ostracodes from the southern ocean.

Wayne R. Gibson, University of Wisconsin-Milwaukee is working on paleoecology of Miocene ostracodes from St. Marys Formation, Maryland.

Joseph Durazzi, Case Western Reserve University-Cleveland is investigating the environmental effects on the shell chemistry of ostracodes, including magnesium, strontium and oxygen isotopes.

Philip Sandberg, University of Illinois-Urbana, has recently been using the scanning electron microscope on freeze-dried specimens of ostracode appendages.

Albert L. Guber, Pennsylvania State University-University Park, has completed work on dimorphic structures in tetradellids and is now studying the Upper Carboniferous ostracode populations, in western Pennsylvania, from a paleosalinity point of view. The difficult problem separating the specimen from indurated sediments was partly solved by use of the product Quaternary-O.

Jean M. Berdan, U. S. Geological Survey-Washington, D. C. is working on middle Paleozoic Ostracoda of the coastal belt of Maine that have European affinities. She reported that Gregory Sohn of the U.S.G.S. has been revising Paraparchites.

Robert F. Lundin, Arizona State University-Tempe, has completed work on Silurian ostracodes from several formations in Tennessee and during his leave of absence in Europe last year, he began study of some non-Paleocopida Paleozoic ostracodes.

Steven M. Warshauer, University of Cincinnati, has been working on Edenian (U. Ordovician) ostracodes from Indiana, Ohio, and Kentucky based on his own measured sections.

John A. Howe, Bowling Green University, Ohio, is starting to work on Pennsylvanian ostracodes. Don C. Steinker, and Paula Dziak, also from Bowling Green attended the meeting.
A.T. Kilenyi, Macalester College, St. Paul, has completed the taxonomy of the Thames Estuary ostracodes. He is currently pursuing the concept that phenotypy does not apply to the ostracodes with which he is working. Spirited discussions generally ensue when he brings up the subject.

William K. Pooser, Cities Service Oil Co., Houston has recently finished a study of Oligocene ostracodes from the Cooper Marl at Charleston, South Carolina.

Harold W. Scott, Michigan State University, East Lansing, although not working on ostracodes at present, is interested in developments in the group.

James W. Teeter, University of Akron, Ohio has been studying samples from freshwater lakes in Florida.

Donald Hoskins, Pennsylvania Geological Survey, Harrisburg, is not now working on ostracodes but is interested in developments in Paleozoic forms.

F.M. Swain, University of Delaware-Newark, and University of Minnesota-Minneapolis is completing papers on Decorah Shale (Ordovician) and Pacific Coast Holocene ostracodes. SEM study of Sahul Shelf Holocene species, in cooperation with Kenneth McKenzie has been done, and SEM work on selected freshwater species is nearly complete. A Lower Cretaceous-Jurassic paper with P. M. Brown on the Atlantic Coast was submitted to the U.S.G.S. 2 years ago, and an Upper Miocene Atlantic Coast paper was submitted over a year ago to the Survey.

Richard H. Benson, Smithsonian Institution-Washington could not attend but reports completion of the following projects "Architectural solutions to structural stress in rigid micro-organisms through SEM examination" (publ. in Proc. Third Ann. Stereoscan Colloq., 1970); "Role of ornamentation in the design and function of the ostracode carapace"; "Terminology of surface features in the ornate ostracodes" with P. C. Sylvester Bradley submitted to Lethaea; and a paper on a new deep-sea genus.

Raymond Bate of the British Museum (N.H.), London is reported to have found Upper Cretaceous phosphatized ostracodes from Brazil that contain traces of appendages.

The meeting was adjourned at 10.45 P.M. and was followed by informal discussions on Cyprideis torosa and other problems. A similar meeting next year will probably be organized. This year's meeting was sponsored by the Paleontological Society through President William Easton and was one of a group of similar meetings organized by Reuben Ross.

F.M. Swain
November 18, 1970
Newark, Delaware.
1971 Friends of the Ostracoda Meeting in Washington, D.C.

The Friends of the Ostracoda met in informal session on November 1, 1971 in conjunction with the Annual Meetings of the Geological Society of America. Because this was the tenth anniversary of the publication of the ostracode volume of the TREATISE, J.M. Berdan and I.C. Sohn arranged a panel to review the significant advances in the study of Ostracoda during the past decade. Sohn, who chaired the meeting, read a letter from Prof. Howe, who is convalescing from surgery performed this summer, and distributed reprints "Preliminary list of new ostracode taxa 1961–1971: Melanges, no. 3, October 1971" prepared by Prof. Howe for this session. A card signed by the following participants was mailed to Prof. Howe: R.H. Benson, J.M. Beran, W.A. van den Bold, W.K. Braun, D. Delorme, D. Dickie, J.J. Durazzi, D.J. Echols, R. Flower, R.E. Gernant, A.L. Gubert, C.W. Hart, D.G. Hart, J. Hazel, N.O. Jørgensen, R.L. Kaesler, M. Kontovitz, L.S. Kornicker, K. Lister, R.F. Lundin, H. Malz, J.W. Miller, Betty Kellett Nadeau, D.A. Nickey, G. Price, W.K. Pooser, P.A. Sandberg, F. Swain, I.G. Sohn, S.M. Warschauer.

Each participant briefly described his current activity. The panel consisting of R.H. Benson, (Recent), W.A. van den Bold (Tertiary), W.K. Braun (Jurassic), D.J. Echols (Upper Paleozoic) and R.F. Lundin (Lower Paleozoic) highlighted advances during the past decade. During the discussion H. Malz passed around photographs of the Russian ostracode workers who participated in the European Micropaleontological Colloquium in the Crimea. Betty Bellett Nadeau discussed the world distribution of Devonian ostracodes, W.K. Braun showed the results of his 5 year study of the Devonian zonation by means of ostracodes in Saskatchewan. L.S. Kornicker discussed the Myodocopida, and C.W. Hart and D.G. Hart discussed their work on entocytherids.

N.O. Jørgensen, and S.M. Warschauer described their studies on Maestrichtian and Upper Ordovician ostracodes respectively. The consumption of four bottles of sherry resulted in friendly discussions participated by all present.

Jann Miller

George Washington University

SYMPOSIUM ON THE BIOLOGY AND PALEOBIOLOGY OF OSTRACODA

On account of the delay in the publication of this number I do not know what the present stand on the preparation for the Symposium which is planned for 14-17 August at the Department of Geology, University of Delaware, Newark, Delaware 19711 U.S.A. (write to Prof. F.M. Swain for further information at the above address).

Besides papers on biology and paleobiology and a meeting of the Committee on Recent Ostracoda various post conference activities were planned: field trip to Silurian and Devonian localities of Ulrich and Bassler and of Swartz, sampling of marine sediments in Delaware Bay and nearby Atlantic Ocean, study of the collections at the U.S. National Museum in Washington D.C. and last but not least use of the scanning electron microscope of the host university.
THE OSTRACODOLOGIST - 5 - December, 1971

THE IPU WORKING GROUP ON "TETHYS DEEP-SEA OSTRACODES"

In 1969 several ostracode workers formed a "working group" to explore the nature and extent of the fossil record of deep-water ostracodes that once lived in the Tethys Ocean. Although this group is officially recognized as a research team by the International Paleontological Union, it is purposely very loosely organized to allow the greatest freedom of individual research, and at the same time serve as a union of those of similar interests. It was begun by myself and Peter C. Sylvester-Bradley to form the nucleus of an "expedition" which we hoped would be jointly sponsored by the American and Yugoslav governments. However, it was not possible to obtain this sponsorship. The hopes of the original group (also including A. Sokac, N. Krstic, G. Ruggieri, P. Ascoli, H.J. Oertli, V. Pekorny, G. Hartmann and R. Knesler) were, individually or in smaller groups, to specifically look for a very select fossil assemblage in the Mediterranean region whose counterpart is known to have lived on the world ocean floor during the Cenozoic and possibly the late Mesozoic. Interest in this ostracoda assemblage continues as does the working group, but on an informal basis.

The present purpose of the "Working Group on Tethys Deep-Sea Ostracodes" is to maintain interest in this small and difficult-to-find fossil assemblage, to discover its origin and its history, and to focus attention on problems it represents or produces. Maybe it will form a subject for discussion at some future meeting in which workers from a number of separate geographic areas could participate. As coordinator of this group, I see my function as a clearinghouse of information about the interest and activities of members and to seek ways to make a meeting possible at some time in the future.

Anyone who wishes to may correspond with me about activities of the "group" and be put on the mailing list. This list will be circulated with notes about the special interests of participating individuals. I will act as broker only to the point where the persons can correspond themselves. A general summary of ongoing activities will be given to the Ostracodologist periodically.

At present there has been some exploratory discussion with agencies about sponsorship of a meeting several years hence, somewhere in the Mediterranean region. The subjects of this meeting would be primarily directed toward the change in Tethyan ostracode faunas with the development of the Mediterranean. Because the subject is not as broad as those of Naples, Hull or Pau, a lesser number of workers might be expected; but anyone with interest would be welcome.

Those wishing to correspond with me and be placed on the "mailing list" will please send me their names and a brief paragraph (for inclusion on the list) explaining their interest in the deep-sea ostracode fauna. Those interested in shallow epicontinental marine and fresh-water ostracodes related to Tethys are urged to correspond with K.C. McKenzie of the British Museum (Natural History, London). Those interested in ostracodes of Paratethys are urged to correspond with Nadezda Krstic (nas. R. Burdzevica B-13, Belgrade, Yugoslavia).

Richard H. Benson
National Museum of Natural History
Smithsonian Institution
Washington, D.C. 20560 U.S.A.
-pods, -coda and English as she is spoke

I was most amused to read my friend Anders Martinsson's thoroughly misleading and tendentious tract on differing interpretations of Ostracoda in the vulgar. As an inveterate and quite unrepentant ostracod worker I offer the following few thoughts in an attempt to pour oil on troubled waters although I suspect that adding petrol (gasoline pace my American friends) might be a more apt simile.

First let us be quite clear what we are talking about. In spite of specious arguments about etymology we are talking not about Greek but about the English language and its rendering of a foreign word in the vernacular. The language of these islands has assimilated words from more languages than most and the criterion has always been usage and sound rather than etymology. Rules may be for anglicizing Greek, and useful they may be for writing down formal taxonomic names, but it is a rash man indeed who would presume to dictate how the English should speak their own language. There are good precedents for modifying the Greek. We have long since modified that hard Greek Kappa of Kinema to the soft sibilant of cinema — the language demands it — just as the Germans have retained the former in das Kino because it sounds right.

Secondly, he quotes the case of phyllopods etc., but surely this is a two edged argument, for do not the French use 'phyllpodes' etc? Let us have no spurious arguments about the etymology being different. 'Phylllopod' would sound wrong in French and Heaven forbid that they ever be forced to change.

Thirdly we come to the question of stress. This is such a complex matter in the English Language that any detailed analysis is out of the question. I must, however, draw attention to the principal argument which unfortunately is not carried far enough and leaves the data quite unanalysed. I refer to the telling catalogue of geode, cathode, anode etc where the 'o' is long and the final 'e' is retained. But pause and reflect a minute! Are these not words of two syllables? And what is isopod, copepod, brachiopod etc? Surely these are words of three or more syllables? Gramercy! Could it be that the English are not quite the syntactical ignorami that we have all been led to believe? There might perhaps be a little food for thought here.

Living in a seaport which lands more cod than any other port in the world I enjoyed the quite irrelevant comment on that much maligned fish. Such a play on split words has had a long vogue in certain types of comedy from Shakespeare right down to the present day. I ought perhaps to point out in passing, however, with all the tact I can muster that in English the plural of cod is —— cod!

Fourthly the term ostracod has a long and respectable history. Its ancestry is impeccable and a catalogue would be tedious. One wonders if Dr. Martinsson has read the title of that very fine work by his own countryman Skogsberg (1920) recently. It is also a cause for regret that Dr. Martinsson's opinion of Professor Howe's linguistic expertise must be so low since he named his work a 'Handbook of Ostracod Taxonomy', whilst the usage of Van Morkhoven
in his two volume work on Post-Palaeozoic Ostracoda must put him quite beyond the pale.

Fifthly, like most aphorisms, the one that gave rise to this proves to be an inaccurate generalisation when examined in detail. The English, it is true, work on ostracods and the French on ostracodes, but as far as I am aware the Germans work on Ostracoden, the Italians on ostracodi, the Spaniards on ostracodos and so on.

Finally, let us return to sanity and ask just what is the point of all this furore. We all use the dog Latin 'Ostracoda' for formal designation. Is Dr Martinsson really saying that there is a risk of confusion and misunderstanding because in our own languages we adopt slightly different forms in naturalising a word? As far as one can see this artificially exacerbated 'problem' is no problem at all save to the tidy bureaucratic mind which must needs reduce everything to a dead level, dreary uniformity. In this case uniformity will not make one jot or tittle difference to better understanding. We have a proverb which states that 'Variety is the spice of life' and I am delighted that other languages naturalise 'Ostracoda' in their own inimitable style. It is just as unthinkable that they should be forced to change to 'ostracod' as for me to have to write 'ostracode' in my native country.

Kipling once wrote that 'there are nine and sixty ways of constructing tribal lays and every single one of them is right'. It was a very perceptive comment. Let us recognise that language is a living developing web, not a plaything for arid etymological pedantry. Vive les differences!

John W. Neale

POD-CODDING ONCE MORE

I was delighted with my friend John Neale's dynamic reaction to my dry and bureaucratic note on the vernacularization to English of OSTRACODA. Being extremely dogmatic and convinced that the world stands or falls with the correct spelling of ostracode, I feel compelled to reply.

However, let us start with a correction - what I wrote about "anoda" and "cathode" has relevance only with regard to pronunciation, not etymology. The derivation is from "anodos" and "kathodos", respectively. I consulted an imperfect source.

John Neale adopts the attitude that etymology and phonetics ("usage and sound" in the latter case) are two separate matters. On the contrary. They are closely related, and the spelling of vernacularized terms is based on the urge in each individual language to twist the classical (or otherwise foreign) words so as to adjust them to pronunciation and so to its expression in spelling. Hence it is not just an accident that the French spell phyllopode et ostracode and the English phyllopod and ostracode (the latter at best).
I am afraid that no linguist would sanction the anglicizing of "geode" and "ostracode" in different ways merely because they are different in length.

The third and hardly relevant point is the joke about the plural of cod. I am, and was, aware that even in the King's English Hull is a seaport that lands cod. Available sources indicate that the normal kind of plural is used expressly to mark a non-collective sense (fish species).

Next point is the long and respectable history of "ostracod". Admittedly, it is as long as that of "ostracode", or almost so. But this carries hardly any weight. Many respectable workers have used it - to the names mentioned by John Neale I would in this context just like to add John Neals. I do not know which form Shakespeare or Doctor Johnson would have used, and I am not convinced that their usage would have been held up as a model for modern English usage.

The reply to the last point - French, German, Italian, Russian, and Spanish usage - is the same as on the blackboard in Pau. Incidentally, in Swedish it is "ostracod", or - possibly with a slight touch of chauvinism - "ostrakod". It is "geod" and "castod" too, but the botanists say "phylodium" and "staminodium". Vive les differences - if they make sense.

I am not so sure that aliens should not be permitted an opinion as to the English language or even some right to influence it. It is one of the finest, most useful, and most universal instruments in international science. It would be an advantage to be able to operate this instrument with just a few buttons instead of unnecessarily many - the latter refers to grammatical, etymological, and phonetical inconsistencies. In a way the English language is no longer the property exclusively of what Churchill called the English-speaking peoples. The patents have expired. Most of those who speak the amazing English dialects of other countries would be greatly helped if their disproportional efforts to attain similarity in the written form to standard English could be based on the feeling that this language develops according to a pattern, not as a mass of individual cases to be memorized. This is, after all, the practical essence of the problem so bureaucratically discussed.

On searching for a properly styled conclusion for this second dry note, I find the Swedish communist leader's recent and much quoted statement: "There must exist some damned sort of order within a political party".

This may be true for scientific language, too. A. Martinsson

ODE ON THE SPELLING OF OSTRACODE

The spelling of the Muschelkrebsen.
With an e it always has been
As spelled by me and not by you
You will find in nineteen sixty two.¹

¹ - 1962, Martinsson, p.359; Sohn, 1961, p.111

I.G. SOHN

With Greg's ode I think the subject comes to a conclusion - EG
INDEX TO NATURAL HISTORY COLLECTIONS

Where is the ---- Collection? By C. Davies Sherborn, D. Sc., Cambridge University Press, 1940:141.

This catalogue, published in 1940, contains about 1,700 entries that give the whereabouts of past natural history collections and, in some cases, a brief account of their history. Its compiler, C. Davies Sherborn an eminent bibliographer, made a significant contribution to scientific literature through the reference works he produced e.g. Index Animalium, 1758-1850 and his painstaking labours in establishing publication dates of important works. In the course of these duties, he amassed details relating to the older collections concerned and subsequently, by diligent searching in miscellaneous records, sales catalogues and popular journals he was able to augment his notes so that they would provide a useful reference guide for systematists. Sherborn recognized that this catalogue was far from complete, but his reviewers, while praising his intentions, criticized its contents and particularly mentioned the omission of many famous collections housed in the major museums and institutions of Great Britain.

It is felt that a complete revision of this reference book would be of value to many taxonomists, both zoological and palaeontological, and others interested in the history of the natural sciences. In addition to rectifying incomplete and inaccurate entries, including the important omissions mentioned by critics and incorporating information on the later history and present whereabouts of the collections listed by Sherborn, entries concerning more recent collections will be provided, particularly those appertaining to branches of the natural sciences that have developed since 1940. It is also intended to widen the scope of the catalogue, although retaining its essentially British and European coverage, by mentioning important material available in scientific institutions throughout the world. However, information on botanical collections will not be included since this field is thoroughly covered in the Index Herbariorum. The inclusion of further biographical details of the collectors and information on hand-writing and portrait collections, together with a complete bibliography, should also increase the value of this catalogue as a reference tool.

Initially, the reference resources of the various libraries in the British Museum (Natural History) and the knowledge of the Museum's scientific staff will be used to compile this revision, but it is hoped that many others will be prepared and encouraged to collaborate in providing details of collections and collectors.

Any information that will be of value to the project should be addressed to, either Mr. A. Wheeler, Secretary, Society for the Bibliography of Natural History; or, Mr. R.J. Cleveley, Dept. of Palaeontology, both at the British Museum (Natural History), Cromwell Road, London, SW7 5BD, England.
PROGRESS REPORT - TETHYS SHALLOW MARINE & FRESHWATER
WORKING GROUPS

Up to April 1971 48 replies were received to the first circular comprising:

- Interested: 37
- Uncertain or incidental interest: 3
- No further interest: 7

Of those who are interested, the majority have published on one or more of the areas listed in the first circular. These areas were:

1. The Caribbean - Gulf of Mexico - Pacific Coast
2. West Africa
3. The Mediterranean - Red Sea - Sudan
4. The Middle East
5. India
6. Malaysia - Indonesia
7. Australasia

Others who replied and declared their interest wrote that they expected to work on material from one or other of these areas in the near future.
One of those with no further interest had previously published on the Pacific Coast. As a result of the replies received, ten other workers were sent copies of the first circular.

Attached to this letter are lists from India (Dr. D.K. Guha; Japan (Dr. K. Ishizaki); Australia (Dr. P.J. Jones). The latter two lists are from Palaeozoic sequences; Dr. Guha's list ranges from Jurassic - Recent. As there are relatively few publications on Indian, Japanese and Australian ostracodes these are particularly useful contributions.

It will take considerably longer to put together lists for the other areas but a start has already been made.

Dr. I.G. Sohn in his reply, suggested the use of data processing in the projects and added: "... in which case the information bank would be open-ended for additions, and the data would be available in geographic, stratigraphic and taxonomic form."

Thus, both projects have got off to a good start (6 of the interested replies incorporated lists or references to publications on freshwater faunas).

I have therefore written to Prof. F.M. Swain requesting that a meeting of ostracodologists interested in these working groups be held during the Delaware congress.

Sincerely,

Ken MCKENZIE, British Museum (Natural History)
THE OSTRACODOLOGIST - 11 December, 1971

Compiler: Dr. P. J. JONES

AUSTRALASIA - OSTRACODA described by P.J. Jones.

WESTERN AUSTRALIA

Lower Triassic - Perth Basin

Paegniun neutrum JONES, 1970 (probably will have to be shifted to Carinaknightina SOHN, 1970)

Hollinella sp. JONES, 1970 (probably belongs to Hollinella
(Praehollinella) BLESS & JORDAN, 1970)

Truncobairdia beaglenesis JONES, 1970

Bairdia sp. JONES, 1970

Upper Devonian - Bonaparte Gulf Basin

Frasnian

Pribylites (Parapribylites) hanaicus POKORNY, 1950 (note - revision necessary; this taxon is probably a new species of Kielciella)

Limbata sp. A. JONES, 1968

Amphiisites sp. A. JONES, 1968

* Knoxiella sp. A. JONES, 1968

Bairdia sp. cf. B. nalivkini EGOROV, 1953

B. sp. cf. B. naumovae EGOROV, 1953

Frasnian and Famennian

* Indivisa variolata ZANINA, 1960

Krausella ? dubitata JONES, 1968

Famennian

Geisina monothele JONES, 1968

* Marginia venula JONES, 1968

M. reticulata JONES, 1968

Beyrichiopsis? perplexa JONES, 1968

Leptoprimitie sp. A. JONES, 1968

* Paraparchites sp. cf. P. nicklesi (ULRICH, 1891)

* also present in the Famennium of the Canning Basin, W.A.
* Coelocenallina sp. cf. C. fabiformia (KESLING & KILGORE, 1952)
 Diphychilina tryphera JONES, 1968
* Cavellina sp. A. JONES, 1968
 Sulcalia altifrons JONES, 1968
 Orthobairdia ordensia JONES, 1968

AUSTRALASIA - ERIDOSTRACA described by P.J. Jones

WESTERN AUSTRALIA

Lower Carboniferous

Cryptophyllus diatropus JONES, 1962 (early to middle Tournaissian; Tournaissian; Canning and Bonaparte Gulf Basins)

C. platyomus JONES, 1962 (late Tournaissian? and/or early Visean; Bonaparte Gulf Basin)

C. sp. B. JONES, 1962 (late Visean; Canning Basin - not Westphalian B as previously reported - however, it is still the youngest known occurrence of Cryptophyllus).

Upper Devonian

Cryptophyllus sp. indet. JONES, 1968 (Famennian; Bonaparte Gulf Basin)

Eridoconcha sp. A JONES, 1968 (Frasnian; Bonaparte Gulf Basin)

AUSTRALASIA - OSTRACODA described by Irene Crespin

QUEENSLAND & N.S.W.

Lower Permian

Bairdia grayi CRESPIN 1945 = Silenites grayi (CRESPIN, 1945)
Bardia nvei CRESPIN 1945 = nomén dubium (bairdiid steinkern)

* also present in the Famennian of the Canning Basin
Healdia chapmani CRESPIN 1945
Cavellina springeurense CRESPIN 1945 = Healdia? springeurense (CRESPIN, 1945)
Cavellina aequivolvis CRESPIN 1945 = Microcheilinelle aequivolvis (CRESPIN, 1945)
Cavellina kulnuraensis CRESPIN 1945 = Cavellina? kulnuraensis CRESPIN, 1945
Baselerella australae CRESPIN 1945 = Graphiadactyline australae (CRESPIN, 1945)

INDIA

Compiler: Dr. D.K. GUHA

A grateful acknowledgement is made to the Director of the Oil and Natural Gas Commission, India, for authorising publication of this list.

List of genera and species worked

<table>
<thead>
<tr>
<th>List of species</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Cytherella disjuncta Lubimova and Mohan n.sp.</td>
<td></td>
</tr>
<tr>
<td>3. Cytherella protuberantis Lubimova and Guha n.sp.</td>
<td></td>
</tr>
<tr>
<td>4. Cytherelloides difficila Lubimova and Mohan n.sp.</td>
<td></td>
</tr>
<tr>
<td>5. Cytherelloides cutcheensis Lubimova and Guha n.sp.</td>
<td></td>
</tr>
<tr>
<td>6. Cytherelloides insolensa Lubimova and Guha n.sp.</td>
<td></td>
</tr>
<tr>
<td>7. Cytherelloidea costatruncata Lubimova and Mohan n.sp.</td>
<td></td>
</tr>
<tr>
<td>8. Bairdopilates poddari Lubimova and Mohan n.sp.</td>
<td></td>
</tr>
<tr>
<td>9. Paracypris conterna Lubimova and Mohan n.sp.</td>
<td></td>
</tr>
<tr>
<td>10. Paracypris meridonalis Lubimova and Mohan n.sp.</td>
<td></td>
</tr>
<tr>
<td>11. Krithe autocrinna Lubimova and Guha n.sp.</td>
<td></td>
</tr>
<tr>
<td>12. Leptocythere affinis Lubimova and Mohan n.sp.</td>
<td></td>
</tr>
<tr>
<td>13. Leptocythere chadopadiensis Lubimova and Guha n.sp.</td>
<td></td>
</tr>
<tr>
<td>14. Clithrocytheridea autonoma Lubimova and Guha n.sp.</td>
<td></td>
</tr>
<tr>
<td>15. Clithrocytheridea manifesta Lubimova and Guha n.sp.</td>
<td></td>
</tr>
<tr>
<td>16. Miocyprideis chaudhury (Lubimova and Guha) n.sp.</td>
<td></td>
</tr>
<tr>
<td>17. Trachypleberis spinellosa (Lubimova and Guha) n.sp.</td>
<td></td>
</tr>
<tr>
<td>18. Quadracythere arcana (Lubimova and Guha) n.sp.</td>
<td></td>
</tr>
<tr>
<td>19. Bradyleya latebrosa (Lubimova and Guha) n.sp.</td>
<td></td>
</tr>
<tr>
<td>20. Cythereis pulcheris Lubimova and Guha n.sp.</td>
<td></td>
</tr>
<tr>
<td>21. Actinocythereis tumefacentis (Lubimova and Guha) n.sp.</td>
<td></td>
</tr>
<tr>
<td>22. Quadracythere memorans (Lubimova and Guha) n.sp.</td>
<td></td>
</tr>
<tr>
<td>23. Aurila chaasaensis (Lubimova and Guha) n.sp.</td>
<td></td>
</tr>
<tr>
<td>24. Echinocythereis fossularis Lubimova and Guha n.sp.</td>
<td></td>
</tr>
</tbody>
</table>
List of species

25. Leguminocycetherlands mutata Lubimova and Guha n.sp.
26. Paijenborchella proa Lubimova and Guha n.sp.
27. Cytheretta ascendens Lubimova and Guha n.sp.
28. Cytheretta trifurcata Lubimova and Guha n.sp.
29. Progonocythere grumosa Lubimova and Mohan n.sp.
30. Progonocythere laeviscula Lubimova and Mohan n.sp.
31. Progonocythere implicata Lubimova and Mohan n.sp.
32. Progonocythere prolata Lubimova and Mohan n.sp.
33. Paracytheridea perspicua Lubimova and Guha n.sp.
34. Cytherura interposita Lubimova and Guha n.sp.
35. Loxoconcha confinis (Lubimova and Guha) n.sp.
36. Cytherelloidea chaasraensis Guha
37. Neoconoceratina kutchensis Guha
38. Ruggieriia aff. michaeliniana (Bosquet)
39. Occultocythereis chaasraensis Guha
40. Platella guzeratensis Guha
41. Cytherelloidea barkhanensis (Tewari and Tandon)
42. C. cambayensis Guha
43. C. guzeratensis Guha
44. C. aff. tewarii Bold.
45. Occultocythereis boldi Guha
46. Kestoleberis rajagopalanensis Guha
47. Costa cambayensis Guha
48. Leguminocythereis lunejensis Guha
49. Neomonoceratina oertilii Guha
50. Hemicythere saurashtraensis Guha
51. Acanthocythereis bhujenis(Tewari & Tandon)
52. Cytheropteron kutchensis Guha
53. Schizocythere guzeratensis Guha
54. Paijenborecha trisulcata Mandelstam
55. Cytheromorpha kirtharensis Guha
56. Kestoleberis cf. subglobosa Bosquet.
57. Hemicythere sahni Tewari and Tandon
58. Hermannites indica"
59. Bythocypris mianica"
60. Bairdia indica"

References

List of species

61. Bairdopilata subdeltoides Munster Var. koteawarensis Tewari and Tandon.
62. Cytheralloidea cingulata (Brady)
63. Bairdia victrix Brady,
64. Triebelina indopacifica Bold
65. Paracytheridea andamanensis n.sp. Guha
66. Loxoconcha alata Brady
67. Hemicytherura scutellata (Brady)
68. Paracytheridea longicaudata (Brady)
69. Neomonomeratina microreticulata Kingma
70. Leptocythere inconspicua (Brady)
71. Paizenborchella malaiensis Kingma
72. Kangarine abyssicola (Muller)
73. Occultocythere lauata (Brady)
74. Trachyleberis bodjonegoroensis Kingma
75. Bairdia cf. tuberculata Brady
76. Xestoleberis variegata Brady
77. Loxoconcha lillieborchi Brady
78. Loxoconchella honoluliensis (Brady)
79. Triebelina sertata Triebel,
80. Bythocythere kueneni Key
81. Krithe bartonensis (Jones)
82. Bairdia cf. orientalis (Dooglas)
83. Cytheropteron assimile Brady
84. C. patagoniense Brady
85. Eucytherura complexa (Brady)
86. Xestoleberis nana Brady
87. X. margaritae Brady.
88. Krithe tumida Brady.
89. Caudites javana Kingma.
90. Paizenborchella iocosa Kingma
91. Hemicythera packardi (Brady)
92. Trachyleberis pravā ? (Baird)
93. Bradleya dictyon (Brady)
94. Cytheralloidea subreticulata Keij
95. Paracypris zealandica (Brady)
96. Clithrocytheridea spinulosa (Brady)
97. Cytherura sumatraensis Kingma
98. Trachyleberis goujoni (Brady)
99. T. hamata (Muller)
100. Aurila chaasraensis (Lubimova & Guha)
101. Hemicythera cauperiensis Guha.
102. Xestoleberis granulosa (Brady).
103. Leptocythere gracilis (Brady).
104. Tanella gracilis Kingma
105. Bythocypris kutchensis Guha
106. Paracypris lakiensis Guha.
107. P. jhingrani Singh and Tewari.
108. Schizocythere spinosa Guha.
109. Occultocythere is whoslawii Guha.

References

List of species

110. Pterygocythereis kakdiensis Guha.
111. Ovocythereidea cambayensis Guha.
112. Semicytherura kutchensis Guha
113. Orthonotacythere kutchensis Guha
114. Neonomoceratina gajensis Guha
115. Paijenbornchella narediensis Guha
116. Paijenborchellina kutchensis Guha
117. Cytheropteron kutchensis (Guha)
118. Paracytheridea sastri Guha
119. P.tewarii Guha
120. Neocyprideis bhupendri(Singh & Misra)
121. Hermanites avadhesi(Singh & Misra)
122. Cytherella rajui Guha
123. Cytherelilloidea vridhachalensis Guha
124. C.bhatiiai Guha.
125. Bairdia talukdari Guha
126. Cuneocythere keiji Guha
127. Xastoleberis runparayanalurensis Guha
128. Urolaberis reticulata Guha
129. U.gopurapuramensis Guha
130. Kingmaina sastri Guha
131. Brachicythere mckenjie Guha
132. Eucytherura bouldi Guha
133. Hermanites pondicheriensis Rajagopalan
134. H.anastomosa(Rajagopalan)
135. Cythereis tamulicus (Rajagopalan)
136. Schizocythere leviusoni(Rajagopalan)
137. Pterygocythereis sp.
138. Cytheropteron sp.
139. Cytherideis sp.
140. Paracypris siliqua Jones and Hinde
141. Cytherelilloidea cf.araromiensis Reymert.
142. Cytherella ovoidea Alexander.
143. Paracypris nigriensis Reymert.
144. Xastoleberis marssonii Bonnema
145. Bairdia roemerii (Deroo)
146. Ascicythere inflata(Rajagopalan)
147. Brachicythere n.sp.
148. Repandocosta sp.
149. Cythereis sp.
150. Eucythere sp.
151. Paracypris Cambayensis Guha
152. Actinocythereis grekoffi Guha
153. Paijenbornchella tewarti Guha.
154. Buntonia lubimovae Guha.

References

13. Recorded from shallow hole drilled near Chitteri Kuppam(11°34'44"; 79°19'54"), Tamilnadu, S.India, now under study.

Appendix I

Ecology of Recent Ostracoda (and Foraminifera) along the East coast (Bay of Bengal) of India.

For Doctoral Thesis - M. Ananda Rao, Under the Director-ship of Dr. M. Subba Rao, Andhra University, Waltair, India. The Ostracode study is being carried out under the guidance of Shri D.K. Guha, Geologist, Oil & Natural Gas Commission.

N.B. Locality = V - Visakhapatnam
 P - Paleru
 M - Machilipatnam
 K - Krishnapatnam
 N - Nellore

<table>
<thead>
<tr>
<th>Species</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cytherella pulchra (Brady)</td>
<td>V. & K.</td>
</tr>
<tr>
<td>2. C. punctata (Brady)</td>
<td>K.</td>
</tr>
<tr>
<td>3. C. semitalis (Brady)</td>
<td>V.</td>
</tr>
<tr>
<td>4. Cytherelloidea javana (LeRoy)</td>
<td>V. & K.</td>
</tr>
<tr>
<td>5. C. bankoensis (LeRoy)</td>
<td>K.</td>
</tr>
<tr>
<td>6. C. sp. (two)</td>
<td>V.</td>
</tr>
<tr>
<td>7. Bairdopilata paddaria (Lubimora & Mohan)</td>
<td>V.</td>
</tr>
<tr>
<td>8. Bairdia foveolata (Brady)</td>
<td>V.</td>
</tr>
<tr>
<td>9. Cyprinotus fretensis (Brady)</td>
<td>V.</td>
</tr>
<tr>
<td>10. Cypridopsis obesa (Brady & Rob)</td>
<td>V. & K.</td>
</tr>
<tr>
<td>11. Cypridopsis helvetica (Kaufmann)</td>
<td>V.</td>
</tr>
<tr>
<td>12. Cryptocandona reducta (Ahl)</td>
<td>V.</td>
</tr>
<tr>
<td>13. Pontocypris trigonella (G.O.S.)</td>
<td>P., V. & K.</td>
</tr>
<tr>
<td>14. Faracypria sp.</td>
<td>P.</td>
</tr>
<tr>
<td>15. Phlyctenophora zealandica (Brady)</td>
<td>P.</td>
</tr>
<tr>
<td>16. Ilyocypris gibba (Ramdohr)</td>
<td>M.</td>
</tr>
<tr>
<td>17. I. bradyi (G.O.S.)</td>
<td>N.</td>
</tr>
<tr>
<td>18. Cythere sp.</td>
<td>V.</td>
</tr>
<tr>
<td>19. Leptocythere inconspicua (Brady)</td>
<td>N., P & M.</td>
</tr>
<tr>
<td>20. Leptocythere spp.</td>
<td>N., K., P & M</td>
</tr>
<tr>
<td>21. Callistocythere crispsata (Brady)</td>
<td>N. & K.</td>
</tr>
<tr>
<td>22. Tanella gracilis (Kingma)</td>
<td>P & M.</td>
</tr>
<tr>
<td>23. Quadracythere sp.</td>
<td>V.</td>
</tr>
<tr>
<td>24. Bradleys sp. cf. C. rubra (Muller)</td>
<td>V.</td>
</tr>
<tr>
<td>25. B. dicyton (Brady)</td>
<td>V.</td>
</tr>
<tr>
<td>26. Caudites javana (Kingma)</td>
<td>P & K</td>
</tr>
<tr>
<td>27. C. sp. New</td>
<td>P & K</td>
</tr>
<tr>
<td>28. Echinocythereis keutapangensis (Kingma)</td>
<td>V.</td>
</tr>
<tr>
<td>29. E. sp.</td>
<td>P & N</td>
</tr>
<tr>
<td>30. Leguminocythereis mutata (Lubimora & Guha)</td>
<td>V.</td>
</tr>
<tr>
<td>31. L. sp. cf. Thalmanniifuna (Brady)</td>
<td>V.</td>
</tr>
<tr>
<td>32. L. sp.</td>
<td>V.</td>
</tr>
<tr>
<td>33. Tradhyleberis gounjoi (Brady)</td>
<td>V.</td>
</tr>
<tr>
<td>34. T. hamata (Müller)</td>
<td>V.</td>
</tr>
</tbody>
</table>
35. T. sp. juv. cf. T. hystrix (Brady) V & M.
36. Cythereis hodgii (Brady) V.
37. C. cribiformis (Brady) V.
38. Carinocythereis sp. cf. C. hamata Muller K & N.
39. Costa sp. K & N.
40. Brachycythere sp. V.
41. Clithrocytheridea atjehensis (Kingma) N & K.
42. Cytherideis laevata (Brady) N & K.
43. a. Krithe sp. aff. lucida (Lieneklama) K & P.
43. Pontocythere sp. (two) M.
44. Copytus rara (McKenzie) M.
44. a. Hemikrithe orientalis (Bold) M., k & P.
45. Cytherura sumatraensis Kingma N., k & P.
46. Semicytherura inversa (Seguenza) M & P.
47. Neomonoceratina mediterranea (Ruggieri) P.
48. N. sp. (Two) P & M.
49. N. microreticulata Kingma P & M.
50. Paijenborchella sp. cf. C. dekroonii (Kingma) P.
51. P. sp. P.
52. Paijenborchellina sp. P.
53. Loxoconcha australis (Brady) P & M.
54. L. grateloupiana (Key) P & M.
55. Cytheromorpha sp. M., P & K.
56. Limnocythere sp. P.
57. Paranimocythere sp. new P.
58. Paradoxostoma acuminata (Muller) M & K.
59. Monoceratina sp. cf. M. bifurcata (Puri) V.
60. Xestoleberis margarita (Brady) K & N.
61. Murrayina fossularis (Lubimova & Guha) V.
62. Actinocythereis scutigera (Brady) V.
63. Ruggieriia sp. V.
64. Thalmannia sp. V.
65. ? Incongruella sp. V.
66. Paracytheridea sp. V.

JAPAN

Compiler: Dr. K. Ishizaki.

Tassobe Formation (Pseudoschwagerina Zone–Wolfcampian), Japan.

Kirkbya cfr. subnipponica Ishizaki K. sp.
Aurikirkbya? brevis Ishizaki A.? hinomataensis Ishizaki
A.? lata Ishizaki A.? tenuise Ishizaki
Coronakirkbya hatai Ishizaki C. ohasamensis Ishizaki
Knightina hinomataensis Ishizaki Amphissites kitakamiensis Ishizaki
Keltettina? japonica Ishizaki
Kindlella kitanipponica Ishizaki
Hataiella oharaiensis Ishizaki
H. longa Ishizaki
H. minima Ishizaki
Roundyella dorsopapillosa Sohn
Bairdia iwaiakienensis Ishizaki
B. cfr. dissimilis Cooper
B. sp.

Takesawa Formation (Bashkirian – Visean?), Japan.

Kirkbya nanatsumoriensis Ishizaki
K. saruwasmensis Ishizaki
Amphissites similaris Morey
Glyptopleurina cfr. tomokose Ishizaki

Nagaiwa Formation (Ardian to lower Atokan), Japan.

Bairdia hanaii Ishizaki
B. hataii Ishizaki
B. mccoyi Cronen and Gutke
B. nagaiwensis Ishizaki
B. cfr. peracuta Warthin
B. pompilioides Warltion
B. pseudomaciata Ishizaki
B. sp. A

Onimaru Formation (Visean), Japan.
B. sp. B

Iwaizaki Limestone (Yabeina Zone=Basleocian–?Chideruvian), Japan.

Hollinella elliptica Ishizaki
Aurikirkbya formula Ishizaki
A. subkelleltae Ishizaki
Kirkbya atollia Ishizaki
K. centrotumida Ishizaki
K. magniforma Ishizaki
K. multicresta Ishizaki
K. subnipponica Ishizaki
K. subquadriforma Ishizaki
Amphissites centronotus (Ulrich and Bassler)
Ectodemites globosa Ishizaki
Polytylites kitaniipponica Ishizaki
Roundyella neopapillosa Ishizaki
Bairdia eucurvia Ishizaki
B. nagaiwensis Ishizaki
B. cfr. oklahomaensis Warltion
B. trianguliformis Chen
Bairdiacypris deloi Bradfield
Ceratobairdia? ambigua Ishizaki
Spinobairdia sp.
Cavellina? nipponica Ishizaki
Tubulibairdia venusta (Chen)
Nagaiwa Formation (Ardian to lower Atokan), Japan.

Hollinella tingi (Patte)
H. paraemaciata Ishizaki
Kirkbya nipponica Ishizaki
K. katakamiensis Ishizaki
K. nagaiwensis Ishizaki
Glyptopleurina tommaoke Ishizaki
G. tumida Ishizaki
Oliganius muratai Ishizaki
Paraparchites hanaai Ishizaki
Samarella hataii Ishizaki

ADDITIONAL INFORMATION, ADDRESS CHANGES, REQUESTS

BELGIUM

(change)
WOUTERS, K.
Inst. of Earth-sciences
Paleontological Laboratory
Regeningstraat 16 bis
B-3000 LEUVEN

CANADA

(change)
ASCOLI, P.
Eastern Petroleum Geology Section
Geol. Survey of Canada - Bedford Institute
Dartmouth, Nova Scotia

DENMARK

(change)
CHRISTENSEN, O.B.
MICHELSB, O.
LIEBERKIND, K.
Geological Survey of Denmark
Thoravej 31
2400 Copenhagen NV

ENGLAND

(change)
WALLACE, D.J.
Dept. Geology,
Birkbeck College
GERMANY (DDR) (change)
JORDAN, H.
Inst. für Wasserwirtschaft
119 Berlin, Schnellerstr. 140
postal address: 92 Freiberg
Am Seilerberg 9

GERMANY (F.R.) (change)
UFFENORDE, Henning
UFFENORDE, Helga née GROOS

HUNGARY
FARKAS, H.
Zoological Department
Hungarian Natural History Museum
VIII Baross u. 13, Budapest

INDIA (change)
SINGH, D.
Civil Eng. Dept.
G.N. Eng. College
Ludhiana, Panjab

INDIA (change)
VICTOR, G.
National Institute of Oceanography
Miramar, Panjim-Goa

SPAIN
SANCHO DE POSADA, L.
Dept. of Paleontology
University of Oviedo
Oviedo

UNITED STATES (change)
VALENTINE, P.
Dept. of Geology
University of California
Davis, Calif. 95616

LIST OF PUBLICATIONS ON OSTRACODA FOR 1970 PART II

ANDREEV, J.N., OERTLI, H.J. Quelques Ostracodes crétacés d'Asie centrale
et formes proches d'Europe
Vopr. Mikropal. no. 13, pp. 95-121, 205-207, 3 pls., 1 fig.
14 app., 7 new, 1 new genus: Pseudocytheropteron
Babinot, J. F.
Nouvelles espèces d'Ostracodes du Cénomanien supérieur de l'aucreola septentrionale du Bassin du Beausset (Bouches-du-Rhône - Var) (1re partie)
Six new spp.

Bolz, H.
Einige Cytherelloidea-Arten (Ostrac.) aus der alpinen Obertrias
Senckenbergiana lehæa, vol. 51, no. 2/3, pp. 239-263, 2 pls., 6 figs.
Nine spp. from the Norian/Rhätian described. Seven, C. valida, C. plana, C. simplex, C. unicostata, C. dentata, C. percostata and C. lateresticulata are new.

Christensen, O. B., Kilenyi, T. I.
Ostracod Biostratigraphy of the Kimmeridgian in Northern and Western Europe
Geol. Survey of Denmark, II ser., no. 95, 65 pp., 4 pls., 11 figs., 1 tab.
The type Kimmeridgian is subdivided into five ostracode zones. Other areas in Northern and Western Europe are compared. Lower Kimmeridgian is uniform, Upper Kimmeridgian has two separate regions - North Sea Basin/NW Danes Regions and Bay of Biscay/Dorset separate from Mid European Region/NW Poland/Scania/Paris Basin.
19 spp. are diagnosed (an alphabetical checklist of 200 spp. is given). Seven new spp., two new subgenera: Rectocythere (Lydicycythere), Aaleniella (Dendocythere).

Guha, D. K.
Observation on the Cenozoic and some Mesozoic Ostracoda of India.
Checklist of Ostracoda with references to 1968.

Haskins, C. W.
Tertiary Ostracoda from the Isle of Wight and Barton, Hampshire, England. Part IV
Rev. Micropal. vol. 12, no. 3, pp. 149-170, 6 figs., 4 pls.
18 spp. from the Cythereideinae are described. Six spp. and two sspp. are new.

Haskins, C. W.
Tertiary Ostracoda from the Isle of Wight and Barton, Hampshire, England. Part V
19 spp. of the Cytheruridae, Leguminocytheridaeae, Krithinae and Neocythereideinae are described, four new spp.

Hiltermann, H.
Fortschritte der Mikropalaentologie in Deutschland mit einer Bibliographie fuer das Jahr 1969
Palaeont. Z. vol. 44, no. 3/4, pp. 215-227
Lists 49 papers with Ostracoda.
A new genus: Lordocythere and seven new spp. are described.

Four new spp.

Two spp.:Maternella geniceraensis n.sp. and Richterina (R.)affer.latior Rabien 1960 are described and several others illustrated

Two new genera: Albacythere & Kerocythere and five new spp.

Four new spp.,one new spp.

Ten spp. described, two are new, four possibly new.

30 spp. from 19 genera were found. Nine spp. are new.
Most of the ostracodes found in Alabama also occur in Brownsport Fm.,some in the Henryhouse Fm.,Dixon Fm. and Waldron Shale in Western Tennessee and Southern Oklahoma

Type species: H.acuta n.sp. Hemicyprideis is indicator for brackish environment, several species previously assigned to Haploocytheridea are now described as Hemicyprideis.

Three n.spp.:Carinocythereis asterospinosus, Ruggieria nigeriana and Patjenborchellina kuznetsovae

PINTO, I. D., ORNELLAS, L. P. DE. A new brackishwater ostracode, Perissocytherideae krommelbeini Pinto & Ornellas sp. nov., from Southern Brazil. Esc. Geol. P. Alegro, Publ. Esp. no. 20, 19 pp., 1 fig., 10 pls.

PINTO, I. D., PURPER, I. A Neotype for Elpidium bromeliarum Muller, 1880 (type species for the genus) and a revision of the Genus Elpidium (Ostracoda). Esc. Geol. P. Alegro, Publ. Esp. no. 19, 23 pp., 1 fig., 11 pls.

LIST OF PUBLICATIONS ON OSTRACODA FOR 1971 - PART I

BENSON, R.H. Ostracodes of the Rita Blanca Lake Deposits Geol. Soc. Amer. Mem., vol. 113, pp. 107-115, 2 pls. Three genera of ostracodes (Limocythere, Candona and Cyprideis) are used in an attempt to interpret the paleoenvironmental conditions.

BENSON, R.H. A New Cenozoic Deep-Sea Genus, Abyssocythere (Crustacea; Ostracoda; Trachyleberididae) with Description of Five New Species Smiths. Contr. Paleobiol., no. 7, 25 pp., 12 figs., 1 tab., 3 pls. The genus, thought to have descended from Cythereis, is typical of deep-sea environment. Modern spp. are common to depths below 2000 m., fossils have been found in deep-water Paleocene, Miocene and Pleistocene. Five new spp.

BLESS, M.J.M., JORDAN, H. The new genus Coplandella from the Carboniferous - the youngest known brychiacean ostracodes Lethais, vol. 14, pp. 185-190, 2 figs. Type sp. - C. novascotica (Jones & Kirkby 1884).

Systematics of the Bairdiidae revised. 11 spp. are synonyms, 2 spp. nom. nud. 28 spp. left, attached to the Bairdiinae, genera: Bairdia, Tribelina (subgenera: Tribelina, Psychobairdia, Nodobairdia), Lobobairdia, Bairdolites (?). 34 new spp. described (17 in open nomenclature).

BUNZA, G., KOZUR, H. Beiträge zur Ostracodenfauna der tethylen Trias. Geol. Palaeont. Mitt. Ibk., vol. 1, no. 2, 76 pp., 8 pls., 2 tbls. In part I of the paper Mockella n.gen. and four new spp. are described. In part II (Kozur) Kerocytheridae n.fam. 12 new genera and subgenera as well as 41 new spp. and sapp. are described, most of them from the superfam. Cytheraceae. Part of the new genera and spp. (those by BOLZ & KOZUR) will be described in detail in: BOLZ, H., KOZUR, H., Zur Taxonomie und Phylogenie der norischen Kerocytheridae (in press).

New name for C. delicata.

Two new genera: Agulhasina & Paraplatycosta, twelve new spp., one new spp.

GUHA, D.K., Upper Eocene Ostracoda from subcrops of Cambay, Western India
Six app., four new.

GUHA, D.K. A new species of Brachycythere (Ostracoda) from the
Upper Cretaceous of Trichinopoly, South India

HASKINS, C.W. Tertiary Ostracoda from the Isle of Wight and Barton,
Hampshire, England. Part VI
Rev. Micropal., vol. 13, no. 4, pp. 207-221, 1 fig., 3 pls.
Description of Leguminocythereididae, Loxoconchidae,
Schizocytheridae. 17 app., six new.

HOBBS, H.H. The Entocytherid Ostracods of Mexico and Cuba
Smithson. Contr. to Zool., no. 81, 55 pp., 31 figs., 3 tbls.
Sixteen app. from four gen described, four app. new.

KEEN, M.C., SIDDIQUI, Q.A. Cenomanian Ostracoda from the Carr's Glen Shell
Bed of Belfast, Northern Ireland
Nine app., two, Neocythere antrimensis & Cythereia carrensis
are new.

KRUTAK, P.R. The Recent Ostracoda of Laguna Mandinga, Veracruz, Mexico
Micropaleontology, vol. 17, no. 1, pp. 1-30, 10 figs., 6 pls.
20 app., six new were encountered in 6000 ostracodes from
38 samples from a tropical, shallow brackishwater lagoon

LANGER, W. Uber einige Feinstrukturen von Muschelkrebsen aus dem
westfalischen Miozän (Jung-Tertiär)
Ultrastructure research, comparison with recent genera.

LIEBAU, A. Homologe Skulpturmuster bei Trachyleberididen und verwandten
Ostrakoden
Thesis; Technischen Universität, Berlin, 117 pp., 32 figs.

MCKENZIE, K.G. Species list of South African freshwater Ostracoda with
an appendix listing museum collections and some further
determinations
Known South African freshwater Ostracoda listed. Two new
tribes: Bradycyprini and Cypricerinini proposed.

MCKENZIE, K.G. Entomostraca of Aldabra, with special reference to the genus
Rebecypris (Crustacea, Ostracoda)
MCKENZIE, K.G. *Paradonostoma paquognath* n. sp. (Ostracoda, Podocopina) from the Gulf of Mexico. *Crustacea*, vol. 20, no. 1, pp. 46–50, 1 fig.

21 spp. & 6 spp. described, five new spp. and two new spp., but three new spp., and a new spp. described in open nomenclature.

Eleven spp. from three genera described.

Twelve spp. described, *Cyprisurcella* n. gen., *C. papillosa* n. sp., *Bicornuella? asturica* n. sp.

Paleocene and Eocene Trachyleberidae represented by fourteen genera, four sub-genera and fifty-nine species. Four genera (*Alopecocythere*, *Gyrocythere*, *Phalocythere* and *Stigmatocythere*) and two subgenera (*Paracostra* and *Scelidoocythereis* belonging to *Costa* and *Echinocythereis* respectively) are new, as well as fifty-four new spp.

39 spp. from 24 gen. Four new spp.
GENERAL ASPECTS AND MORPHOLOGY

GREKOFF,N. - Ecologie - Base de Paleoeologie
KILENYI,T. - Some basic questions in the palaeoecology of Ostracods
POKORNY,VI. - The diversity of fossil ostracode communities as an
indicator of palaeogeographic conditions
BENSON,R.H. & SYLVESTER-BRADLEY,P.C. - Deep-sea Ostracodes and the
transformation of ocean to sea in the Tethys
GRAMANN,F. - Brackish or hyperhaline? Notes on paleoecology based
on Ostracoda
OMATSOLA,E. - Campylocythereis, a new genus of the Campylocytherinae
(Ostr., Crust.) and its muscle scar variation
KORNICKER,L.S. & SOHN, I.G. - Viability of ostracode eggs egested by
fish and effect of digestive fluids on ostracode shells:
ecologic and paleoecologic implications
OERTLI,H.J. - The aspect of ostracode faunas - A possible new tool
in petroleum sedimentology

STATISTICAL METHODS

KAESLER,R.L. & TAYLOR,R.S. - Cluster analysis and ordination in
paleoecology of Ostracoda from the Green River Formation
(Eocene, U.S.A.)
JACOBZONE,M. & CARBONNEL,C. - Coefficient de Jaccard et coefficeint
de correlation : application aux Ostracodes miocenes
DANIELOPOL,D.L. - Quelques remarques sur le peuplement ostracodologique
des eaux dources souterraines d'Europe
SZCZECHURA,J. - Seasonal changes in a reared fresh-water species,
Cyprinotus (Heterocypris) incongruus, and their importance
in the interpretation of variability in fossil Ostracodes
MCKENZIE,K.G. - Paleoecogeography of freshwater Ostracoda
BATE,R.H. - The distribution of Recent Ostracoda in the Abu Dhabi Lagoon,
Persian Gulf.
TER KEURS,D. - Development of Ostracoda and Foraminifera assemblages
in transgressive/regressive sequences
RUGGIERI,C. - Ostracoda as cold climate indicators in the Italian Quaternary
WALL,D.R. & WHATLEY,R.C. - The Ostracoda of the Subrecent deposits
of Tremadoc Bay, Southern Irish Sea
WHATLEY, R.C. & KAYE, P. - The palaeoecology of Eemian (last Interglacial) Ostracoda from Selsey, Sussex.

SIDDIQUI, Q.A. - The palaeoecology of non-marine Pleistocene Ostracoda from Fladbury, Worcestershire and Islworth, Middlesex

DELORME, L.D. - Palaeoecological determinations using Pleistocene freshwater Ostracodes

HOWE, H.V. - Ecology of American torose Cytherideidae

HAZEL, J.E. - Paleoclimatology of the Yorktown Formation (Upper Miocene and Lower Pliocene) of Virginia and North Carolina

DIEBEL, K. & PIETRZENIUK, E. - Holozän Ostracoden von der Doggerbank, Nordsee

KRSTIĆ, N. - Ostracode biofacies in the Pannon

WHATLEY, R.C., WHITTAKER, J.E. & WALL, D.R. - A taxonomic note on the genus Leptocythere SARS, with particular reference to the type species

TERTIARY

DIECI, G., PAREA, G.C., RUSSO, A. & TOMADIN, L. - Sedimentological and micropaleontological differences between turbiditic and non-turbiditic layers in deposits of the Lower Miocene near Vetto d’Enza (Northern Apennines)

PURU, H.S. & VANSTRUM, V.V. - Stratigraphy and paleoecology of the Late Cenozoic sediments of South Florida

VAN DEN BOLD, W.A. - Ostracode associations, salinity and depth of deposition in the Neogene of the Caribbean region

SWAIN, F.M., BECKER, J. & DICKINSON, A. - Paleoecology of Tertiary and fossil Quaternary non-marine Ostracoda from the Western Interior United States

DUCASSE, O. & MOYES, J. - Intérêt des Ostracodes dans une esquisse paleogéographique du Tertiaire Nord-Aquitain

MALZ, H. - A paleoecological review of the Chattian - Aquitanian boundary in the Mainz Basin by means of Ostracoda

KEEN, M.C. - A paleoecological study of the ostracod Hemiocyprideis montosa (JONES & SHERBORN) from the Samnoisian of NW Europe

HASKINS, C.W. - The stratigraphical distribution and paleoecological significance of the Ostracoda from the Lower Tertiary beds of the Hampshire Basin, England

GROSĐIDIER, E., TAMBARAU, Y. & YAPAUDJIAN, L. - Emboche d'une étude paléoécologique du Tertiaire des Petites Pyrénées (Excursion du 22 juillet 1970)

CRETACEOUS

LIEBAU, A. - Die Ableitung der Paläökologischen Systematik einer Oberkretazischen Lagune
THE OSTRACODOLOGIST - 31 - December, 1971

OHMERT, W. - Ecology of some Trachyleberididae (Ostracoda) from the Bavarian Upper Cretaceous

ANDREEV, Yu.N. & MANDELMSTAM, M.I. - Biogeographical associations of Cretaceous Ostracodes in the USSR

KEMPER, E. - Die paläobotanische Verbreitung der Ostrakoden in Obersalzgarnitium und Unterhauterlivium des Mieder-Süchsischen Beckens (NW-Deutschland)

DONZE, P. - Rapports entre les facies et la repartition generique des Ostracodes dans quatre gisements-types, deux a deux synchroniques, du Berriasien et du Barremien du Sud-Est de la France

NEALE, J.W. - Microfaunas and some aspects of the Speeton Clay environment

JURASSIC

JORDAN, H. & BLESS, M.J.M. - A Cypridea fauna from the uppermost Jurassic of Teruel (Spain)

TRIASSIC

URLICHS, M. - Variability of some Ostracodes from the Cassian Beds (Alpine Triassic) depending on the ecology

BOLZ, H. - Late Triassic Bairidiidae and Healdidae

NEUSHTRUBA, I.Yu. - Sur la Paleocologie des Ostracodes d'eau douce du Permien superieur et du Trias inferieur de Bassin houiller de Kouznetsk

DEVONIAN

TSCHIGOVA, V.A. - Geographical distribution of Ostracods in the European Sea Basin at Famannian time

ROZHDESTVENSKAIA, A.A. - Ostracods and paleogeographic conditions of their distribution in a Late Devonian Basin in the east of the Russian Platform

LORANGER, D.M. - Ostracodes, trace elements and Freesian reefs in Sturgeon Lake area

ADAMCZAK, F. - On some ostracod assemblages of Middle Deonian rocks

BECKER, G. - Paleoecology of Middle Devonian Ostracodes from the Eifel region, Germany

LE FEVRE, J. - Paleoecological observations on Devonian Ostracodes from the Ougarta Hills (Algeria)

POLENOVA, E.N. - Biogeographical types of Early Devonian Ostracodes

SILURIAN-DEVONIAN

LUNDIN, R.F. - Possible paleoecological significance of Silurian and Early Devonian ostracode faunas from midcontinental and northeastern North America

CLASSIFICATION (PALEOZOIC)

BLESS, M.J.M. & JORDAN, H. - Classification of paleocopid Ostracodes belonging to the families Ctenoloculinidae, Hollinidae and Hollinellidae
Dr. H. E. B. E. L, one of the outstanding personalities of ostracode research who last year retired from the micropaleontological section of the Senckenberg Museum at Frankfurt passed away at the age of 77.