R. E. Martin, Kluwer Academic/ Plenum Publishers, 459 pp. ISBN 0-306-46232-X (hb), Price £90/ $129.50
This book comprises nineteen chapters which together illustrate the changing role of micropalaeontology within the earth sciences over recent years. Many micropalaeontologists will have noticed the shift in research funding from hydrocarbon exploration and the understanding of earth’s geological history to investigations of ‘recent’ climate change, pollution and associated anthropogenic impacts. As such, this volume points the way forward for many (but not all) within our discipline. It is interesting to note that despite the focus on modern processes in this work the results of many of these studies may have implications for our understanding and interpretation of the fossil record.
The book is divided into five sections: Baseline Studies of Foraminifera; Water Quality in Modern Marine, Marginal Marine and Freshwater ecosystems; Physiological Responses of Foraminifera to Pollution; Disturbance and Recovery Through Time; and Aquifers and Engineering. These comprise a good mix of general papers and specific examples. The first paper (by John Murray), although using foraminifera as an example, provides an illuminating introduction to environmental change and the response of biological organisms to both physical and chemical variability.
The nineteen chapters vary in their scientific approach, geographical and environmental context and in the microfossil groups chosen for study. In this respect the book does not provide a balanced picture. The choice of subject matter is probably a reflection of the papers offered rather than the true scale and breadth of environmental micropalaeontology being undertaken today. This does not detract from the quality of the papers presented. The book is strongly focussed on marine systems, and predominantly foraminiferal projects. Most studies are in some way related to anthropogenic impacts. Fifteen chapters are based on studies of marine and marginal marine ecosystems (twelve on the applications of foraminifera) while only four concentrate on non-marine environments. There is a wide range of research currently addressing the acidification and eutrophication of non-marine waters (especially through the use of diatoms and testate amoebae) which are only briefly covered here. In addition to the fifteen foraminiferal chapters, ostracods (3 papers), thecamoebians (1 paper), chrysophytes & diatoms (1 paper), dinoflagellates (1 paper) and pollen (1 paper) are also dealt with. Geographically, the book mainly takes its examples from Europe and North America with additional chapters covering work in the Pacific and the Middle East.
This book provides an important step between the geological and environmental sciences. However, it is not an all encompassing review of current environmental micropalaeontology, but it does gives an indication of the direction in which the discipline is moving. As such it is an important resource. At £90 the book is very over-priced for a series of case studies and I imagine will only find its way on to a few private shelves. At such a high cost one would have also expected a higher quality of paper and image reproduction. Many of the grey-scale images are low contrast with the result that monotone areas often range from light to dark. Image resolution is also quite poor on some SEM and line drawings, detracting from the feel of the book. A useful index is provided at the end.
With subject matter ranging from the Chemical Ecology of Foraminifera to the Construction of the Thames Barrier and a range of pollution impact studies the book should at least be browsed by those seeking an introduction to the use of microfossils in monitoring recent environmental change.
This review was originally prepared for the Palaeontological Association Newsletter
Ian Boomer
University of Newcastle, UK